Three-dimensional in vitro model of the device-tissue interface reveals innate neuroinflammation can be mitigated by antioxidant ceria nanoparticles

Author:

Atherton ElainaORCID,Hu Yue,Brown Sophie,Papiez Emily,Ling Vivian,Colvin Vicki L.ORCID,Borton David A.ORCID

Abstract

AbstractThe recording instability of neural implants due to neuroinflammation at the device-tissue interface (DTI) is a primary roadblock to broad adoption of brain-machine interfaces. While a multiphasic immune response, marked by glial scaring, oxidative stress (OS), and neurodegeneration, is well-characterized, the independent contributions of systemic and local “innate” immune responses are not well-understood. Three-dimensional primary neural cultures provide a unique environment for studying the drivers of neuroinflammation by decoupling the innate and systemic immune systems, while conserving an endogenous extracellular matrix and structural and functional network complexity. We created a three-dimensional in vitro model of the DTI by seeding primary cortical cells around microwires. Live imaging of microtissues over time revealed independent innate neuroinflammation, marked by increased OS, decreased neuronal density, and increased functional connectivity. We demonstrated the use of this model for therapeutic screening by directly applying drugs to neural tissue, bypassing low bioavailability through the in vivo blood brain barrier. As there is growing interest in long-acting antioxidant therapies, we tested efficacy of “perpetual” antioxidant ceria nanoparticles, which reduced OS, increased neuronal density, and protected functional connectivity. Overall, our avascular in vitro model of the DTI exhibited symptoms of OS-mediated innate neuroinflammation which were mitigated by antioxidant intervention.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3