Author:
Liu Yin,Diaz de Arce Alex J.,Krasnow Mark A.
Abstract
ABSTRACTInteroceptors, sensory neurons that monitor internal organs and states, are essential for physiological homeostasis and generating internal perceptions. Here we describe a comprehensive transcriptomic atlas of interoceptors of the mouse lung, defining 10 molecular subtypes that differ in developmental origin, myelination, receptive fields, terminal morphologies, and cell contacts. Each subtype expresses a unique but overlapping combination of sensory receptors that detect diverse physiological and pathological stimuli, and each can signal to distinct sets of lung cells including immune cells, forming a local neuroimmune interaction network. Functional interrogation of two mechanosensory subtypes reveals exquisitely-specific homeostatic roles in breathing, one regulating inspiratory time and the other inspiratory flow. The results suggest that lung interoceptors encode diverse and dynamic sensory information rivaling that of canonical exteroceptors, and this information is used to drive myriad local cellular interactions and enable precision control of breathing, while providing only vague perceptions of organ states.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献