Three orphan histidine kinases inhibit Clostridioides difficile sporulation

Author:

Edwards Adrianne N.ORCID,Wetzel Daniela,DiCandia Michael A.,McBride Shonna M.ORCID

Abstract

ABSTRACTThe ability of the anaerobic gastrointestinal pathogen, Clostridioides difficile, to survive outside the host relies on the formation of dormant endospores. Spore formation is contingent on the activation of a conserved transcription factor, Spo0A, by phosphorylation. Multiple kinases and phosphatases regulate Spo0A activity in other spore-forming organisms; however, these factors are not well conserved in C. difficile. Previously, we discovered that deletion of a conserved phosphotransfer protein, CD1492, increases sporulation, indicating that CD1492 inhibits C. difficile spore formation. In this study, we investigate the functions of additional conserved orphan phosphotransfer proteins, CD2492, CD1579, and CD1949 which are hypothesized to regulate Spo0A phosphorylation. Disruption of the conserved phosphotransfer protein, CD2492, also increased sporulation frequency, similarly to the CD1492 mutant, and in contrast to a previous study. A CD1492 CD2492 mutant phenocopied the sporulation and gene expression patterns of the single mutants, suggesting that these proteins function in the same genetic pathway to repress sporulation. Deletion of the conserved CD1579 phosphotransfer protein also variably increased sporulation frequency; however, knockdown of CD1949 expression did not influence sporulation. We provide evidence that CD1492, CD2492 and CD1579 function as phosphatases, as mutation of the conserved histidine residue for phosphate transfer abolished CD2492 function, and expression of the CD1492 or CD2492 histidine site-directed mutants or the wild-type CD1579 allele in a parent strain resulted in a dominant negative hypersporulation phenotype. Altogether, at least three phosphotransfer proteins, CD1492, CD2492 and CD1579 (herein, PtpA, PtpB and PtpC) repress C. difficile sporulation initiation by regulating activity of Spo0A.IMPORTANCEThe formation of inactive spores is critical for the long-term survival of the gastrointestinal pathogen Clostridioides difficile. The onset of sporulation is controlled by the master regulator of sporulation, Spo0A, which is activated by phosphorylation. Multiple kinases and phosphatases control Spo0A phosphorylation; however, this regulatory pathway is not defined in C. difficile. We show that two conserved phosphotransfer proteins, CD1492 (PtpA) and CD2492 (PtpB), function in the same regulatory pathway to repress sporulation by preventing Spo0A phosphorylation. We show that another conserved phosphotransfer protein, CD1579 (PtpC), also represses sporulation, and we eliminate the possibility that a fourth orphan histidine kinase protein, CD1949, impacts C. difficile sporulation. These results support the idea that C. difficile inhibits sporulation initiation through multiple phosphatases.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3