Maize AFP1 confers antifungal activity by inhibiting chitin deacetylases from a broad range of fungi

Author:

Ma Lay-SunORCID,Tsai Wei-Lun,Kalunke Raviraj M.,Xu Meng-Yun,Lin Yu-Han,Damei Florensia Ariani,Lee Hui-Chun

Abstract

AbstractAdapted plant pathogenic fungi deacetylate chitin to chitosan to avoid host perception and disarm the chitin-triggered plant immunity. Whether plants have evolved factors to counteract this fungal evasion mechanism in the plant-pathogen interface remains obscure. Here, we decipher the underlying mechanism of maize cysteine-rich receptor-like secreted proteins (CRRSPs)-AFP1, which exhibits mannose-binding dependent antifungal activity. AFP1 initials the action by binding to specific sites on the surface of yeast-like cells, filaments, and germinated spores of the biotrophic fungi Ustilago maydis. This could result in fungal cell growth and cell budding inhibition, delaying spore germination and subsequently reducing fungal viability in a mannose-binding dependence manner. The antifungal activity of AFP1 is conferred by its interaction with the PMT-dependent mannosylated chitin deacetylases (CDAs) and interfering with the conversion of chitin. Our finding that AFP1 targets CDAs from pathogenic fungi and nonpathogenic budding yeast suggests a potential application of the CRRSP in combating fungal diseases and reducing threats posed by the fungal kingdom.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3