Chemo-mechanical Diffusion Waves Orchestrate Collective Dynamics of Immune Cell Podosomes

Author:

Gong ZeORCID,van den Dries Koen,Cambi Alessandra,Shenoy Vivek B.

Abstract

AbstractImmune cells, such as macrophages and dendritic cells, can utilize podosomes, actin-rich protrusions, to generate forces, migrate, and patrol for foreign antigens. In these cells, individual podosomes exhibit periodic protrusion and retraction cycles (vertical oscillations) to probe their microenvironment, while multiple podosomes arranged in clusters demonstrate coordinated wave-like spatiotemporal dynamics. However, the mechanisms governing both the individual vertical oscillations and the coordinated oscillation waves in clusters remain unclear. By integrating actin polymerization, myosin contractility, actin diffusion, and mechanosensitive signaling, we develop a chemo-mechanical model for both the oscillatory growth of individual podosomes and wave-like dynamics in clusters. Our model reveals that podosomes show oscillatory growth when the actin polymerization-associated protrusion and the signaling-associated myosin contraction occur at similar rates, while the diffusion of actin monomers within the cluster drives mesoscale coordination of individual podosome oscillations in an apparent wave-like fashion. Our model predicts the influence of different pharmacological treatments targeting myosin activity, actin polymerization, and mechanosensitive pathways, as well as the impact of the microenvironment stiffness on the wavelengths, frequencies, and speeds of the chemo-mechanical waves. Overall, our integrated theoretical and experimental approach reveals how collective wave dynamics arise due to the coupling between chemo-mechanical signaling and actin diffusion, shedding light on the role of podosomes in immune cell mechanosensing within the context of wound healing and cancer immunotherapy.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms and roles of podosomes and invadopodia;Nature Reviews Molecular Cell Biology;2022-09-14

2. The circle of life: Phases of podosome formation, turnover and reemergence;European Journal of Cell Biology;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3