HSP70-driven molecular response to the proteasome machinery inhibition is a vulnerability in cancer

Author:

Oroń MagdalenaORCID,Grochowski Marcin,Jaiswar Akanksha,Nowak-Niezgoda Magdalena,Kołos Małgorzata,Kaźmierczak Wojciech,Olesiński Tomasz,Lenarcik Małgorzata,Cybulska Magdalena,Mikuła Michał,Żylicz Alicja,Zettl Katherina,Wiśniewski Jacek R.,Walerych DawidORCID

Abstract

AbstractHuman neoplasias are often addicted to the cellular proteasome machinery. This has led to the development of bortezomib and carfilzomib proteasome inhibitors, approved for the treatment of multiple myeloma. Cancers, however, were found resistant to the proteasome inhibition in clinical trials, suggesting effective, cancer-specific compensatory responses. Here we employed global proteomics to determine contributions of compensatory mechanisms upon the proteasome inhibition with carfilzomib - in the cells of multiple myeloma, normal fibroblasts and cancers of lung, colon and pancreas. A pathway-oriented siRNA screen based on proteomics results showed that molecular chaperones, autophagy- and endocytosis-related proteins are cancer-specific vulnerabilities in combination with carfilzomib. HSP70 family chaperones HSPA1A/B were the most universal proteasome inhibition responders in the proteomes of all the studied cell types and HSPA1A/B inhibition most specifically sensitized cancer cells to carfilzomib in cell lines, patient-derived organoids and mouse xenografts. Overlap of proteomics with RNA-seq data showed that the proteasome inhibition-dependent HSPA1A/B induction in cancer cells is mainly transcription-driven and HSF1/2-depedent. Consequently we found that high level of HSPA1A/B mRNA is associated with a low proteasome activity in cancer patient tissues and is a risk factor in cancer patients with the low level of expression of the proteasome. Functionally, the HSPA1A/B induction does not affect a proteasome expression bounce-back upon the carfilzomib treatment, while it supports other mechanisms of the proteasome inhibition response - autophagy, unfolded protein response and directly the 26S proteasome activity. We found that the 26S proteasome is chaperoned and protected from the inhibition with carfilzomib by HSPA1A/B assisted by DNAJB1 co-chaperone in cancer cells and using purified protein system in vitro. Thus, we define HSPA1A/B as a central player in the cellular compensatory response to the decreased proteasome activity, and the sensitive target in cancer cells with the inhibited proteasome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3