Ligand-induced changes in dynamics mediate long-range allostery in the lac repressor

Author:

Glasgow AnumORCID,Hobbs Helen T.ORCID,Perry Zion R.,Marqusee SusanORCID,Kortemme TanjaORCID

Abstract

AbstractAllostery, broadly defined as a protein’s functional response to distal perturbations, is fundamental to biological regulation. In classical models, allosteric ligand binding produces a defined set of structural changes in the protein, resulting in a different low-energy conformation. Proteins that undergo ligand-induced allostery with few observable structural changes therefore frustrate interpretations by classical models. Here we used hydrogen-deuterium exchange with mass spectrometry (HDX/MS) to map the allosteric effects in a paradigm ligand-responsive allosteric transcription factor, the lac repressor (LacI). X-ray crystal structures of the core domain of LacI bound to different small molecule ligands, or the DNA operator, show less than 1.5 Å difference in the protein all-atom root-mean-square-deviation (RMSD) between any two structures. Despite this high degree of similarity among static structures, our HDX/MS experiments reveal widespread and unexpected differences in the flexibility of secondary structures in the LacI core domain in each functional state. We propose a model in which ligand binding allosterically switches the functional response of the repressor by selectively changing the dynamics of particular secondary structure elements relative to each other, shifting the conformational ensemble of the protein between mutually incompatible DNA-bound and inducer-bound states. Our model also provides a mechanistic context for the altered functions of thousands of documented LacI mutants. Furthermore, our approach provides a platform for characterizing and engineering allosteric responses in proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3