Algorithmic Parameter Estimation and Uncertainty Quantification for Hodgkin-Huxley Neuron Models

Author:

Wang Y. Curtis,Sinha Nirvik,Rudi JohannORCID,Velasco James,Idumah Gideon,Powers Randall K.,Heckman Charles J.,Chardon Matthieu

Abstract

AbstractExperimental data-based parameter search for Hodgkin–Huxley-style (HH) neuron models is a major challenge for neuroscientists and neuroengineers. Current search strategies are often computationally expensive, are slow to converge, have difficulty handling nonlinearities or multimodalities in the objective function, or require good initial parameter guesses. Most important, many existing approaches lack quantification of uncertainties in parameter estimates even though such uncertainties are of immense biological significance. We propose a novel method for parameter inference and uncertainty quantification in a Bayesian framework using the Markov chain Monte Carlo (MCMC) approach. This approach incorporates prior knowledge about model parameters (as probability distributions) and aims to map the prior to a posterior distribution of parameters informed by both the model and the data. Furthermore, using the adaptive parallel tempering strategy for MCMC, we tackle the highly nonlinear, noisy, and multimodal loss function, which depends on the HH neuron model. We tested the robustness of our approach using the voltage trace data generated from a 9-parameter HH model using five levels of injected currents (0.0, 0.1, 0.2, 0.3, and 0.4 nA). Each test consisted of running the ground truth with its respective currents to estimate the model parameters. To simulate the condition for fitting a frequency-current (F-I) curve, we also introduced an aggregate objective that runs MCMC against all five levels simultaneously. We found that MCMC was able to produce many solutions with acceptable loss values (e.g., for 0.0 nA, 889 solutions were within 0.5% of the best solution and 1,595 solutions within 1% of the best solution). Thus, an adaptive parallel tempering MCMC search provides a “landscape” of the possible parameter sets with acceptable loss values in a tractable manner. Our approach is able to obtain an intelligently sampled global view of the solution distributions within a search range in a single computation. Additionally, the advantage of uncertainty quantification allows for exploration of further solution spaces, which can serve to better inform future experiments.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Canonical Motor Microcircuit for Control of a Rat Hindlimb;Biomimetic and Biohybrid Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3