Abstract
AbstractTransition path ensemble is a collection of reactive trajectories, all of which largely keep going forward along the transition channel from the reactant state to the product one, and is believed to possess the information necessary for the identification of reaction coordinate. Previously, the full coordinates (both position and momentum) of the snapshots in the transition path ensemble were utilized to obtain the reaction coordinate (J. Chem. Phys. 2016, 144, 114103; J. Chem. Phys. 2018, 148, 084105). Here, with the conformational (or position) coordinates alone, it is demonstrated that the reaction coordinate can be optimized by maximizing the flux of a given coordinate in the transition path ensemble. In the application to alanine dipeptide in vacuum, dihderal angles ϕ and θ were identified to be the two best reaction coordinates, which was consistent with the results in existing studies. A linear combination of these two coordinates gave a better reaction coordinate, which is highly correlated with committor. Most importantly, the method obtained a linear combination of pairwise distances between heavy atoms, which was highly correlated with committor as well. The standard deviation of committor at the transition region defined by the optimized reaction coordinate is as small as 0.08. In addition, the effects of practical factors, such as the choice of transition path sub-ensembles and saving interval between frames in transition paths, on reaction coordinate optimization were also considered.
Publisher
Cold Spring Harbor Laboratory