Abstract
AbstractHierarchical modelling is essential to achieving complex, large-scale models. However, not all modelling schemes support hierarchical composition, and correctly mapping points of connection between models requires comprehensive knowledge of each model’s components and assumptions. To address these challenges in integrating biosimulation models, we propose an approach to automatically and confidently compose biosimulation models. The approach uses bond graphs to combine aspects of physical and thermodynamics-based modelling with biological semantics. We improved on existing approaches by using semantic annotations to automate the recognition of common components. The approach is illustrated by coupling a model of the Ras-MAPK cascade to a model of the upstream activation of EGFR. Through this methodology, we aim to assist researchers and modellers in readily having access to more comprehensive biological systems models.Author summaryDetailed, multi-scale computational models bridging from biomolecular processes to entire organs and bodies have the potential to revolutionise medicine by enabling personalised treatments. One of the key challenges to achieving these models is connecting together the vast number of isolated biosimulation models into a coherent whole. Using recent advances in both modelling techniques and biological standards in the scientific community, we developed an approach to integrate and compose models in a physics-based environment. This provides significant advantages, including the automation of model composition and post-model-composition adjustments. We anticipate that our approach will enable the faster development of realistic and accurate models to understand complex biological systems.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献