Divergent lineages of pathogenic Leptospira species are widespread and persisting in the environment in Puerto Rico, USA

Author:

Stone Nathan E.,Hall Carina M.,Ortiz Marielisa,Hutton Shelby,Santana-Propper Ella,Celona Kimberly R.,Williamson Charles H.D.,Bratsch Nicole,Fernandes Luis G. V.,Busch Joseph D.,Pearson Talima,Rivera-Garcia Sarai,Soltero Fred,Galloway Renee,Sahl Jason W.,Nally Jarlath E.,Wagner David M.ORCID

Abstract

AbstractBackgroundLeptospirosis, caused by Leptospira bacteria, is a common zoonosis worldwide more prevalent in the tropics. Reservoir species and risk factors have been identified but surveys for environmental sources of leptospirosis are rare. Furthermore, understanding of environmental Leptospira containing pathogenic genes and possibly capable of causing disease is incomplete and could result in some pathogenic strains evading detection, thereby convoluting diagnosis, prevention, and epidemiology.Methodology/Principal FindingsWe collected environmental samples from 22 sites in Puerto Rico during three sampling periods over 14-months (Dec 2018-Feb 2020); 10 water and 10 soil samples were collected at each site. Samples were screened for pathogenic Leptospira DNA using the lipL32 PCR assay and positive samples were sequenced to assess genetic diversity. One urban site in San Juan was sampled three times over 14 months to assess persistence in soil; live leptospires were obtained during the last sampling period. Isolates were whole genome sequenced and LipL32 expression was assessed in vitro.We detected pathogenic Leptospira DNA at 15/22 sites; both soil and water were positive at 5/15 sites. We recovered lipL32 sequences from 83/86 positive samples (15/15 positive sites) and secY sequences from 32/86 (10/15 sites); multiple genotypes were identified at 12 sites. These sequences revealed significant diversity across samples, including four novel lipL32 phylogenetic clades. Most samples from the serially sampled site were lipL32 positive at each time point. We sequenced the genomes of six saprophytic and two pathogenic Leptospira isolates; the latter represent a novel pathogenic Leptospira species likely belonging to a new serogroup.Conclusions/SignificanceDiverse and novel pathogenic Leptospira are widespread in the environment in Puerto Rico. The disease potential of the novel lineages is unknown but several persisted for >1 year in soil, which could contaminate water. This work increases understanding of environmental Leptospira and should improve leptospirosis surveillance and diagnostics.Author SummaryLeptospirosis is a common zoonotic disease worldwide, but more prevalent in the tropics. Cases are more common following severe weather events, possibly due to flooding, which may more readily distribute soil and/or water contaminated with Leptospira spp., the disease agents. Human cases increased following the 2017 hurricanes that ravaged Puerto Rico (Maria and Irma), prompting environmental sampling of soil and water to assess the presence, abundance, and persistence of pathogenic leptospires in these environments. The goal was to better understand these potential reservoirs of human and animal disease. Divergent and novel groups of pathogenic Leptospira were abundant and widespread in soil and water in Puerto Rico and sometimes persisted in these environments for >1 year. However, most groups we identified have not previously been described from humans and/or other animals, so the disease potential of these novel organisms is unknown. The results of this study reveal a tremendous amount of previously uncharacterized Leptospira diversity in soil and water in Puerto Rico, which could contribute to cryptic disease. The description and characterization of these novel types improves our understanding of the genus Leptospira, and will aid in the developent of improved diagnostics and preventative tools to advance public health outcomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3