Aspergillus fumigatus drives tissue damage via iterative assaults upon mucosal integrity and immune homeostasis

Author:

Okaa Uju Joy,Bertuzzi Margherita,Fortune-Grant Rachael,Thomson Darren D.,Moyes David L.,Naglik Julian R.,Bignell Elaine

Abstract

ABSTRACTThe human lung is constantly exposed to Aspergillus fumigatus spores, the most prevalent worldwide cause of fungal respiratory disease. Pulmonary tissue damage is a unifying feature of Aspergillus-related diseases; however, the mechanistic basis of damage is not understood. In the lungs of susceptible hosts A. fumigatus undergoes an obligatory morphological switch involving spore germination and hyphal growth. We modelled A. fumigatus infection in cultured A549 human pneumocytes, capturing phosphoactivation status of five host signalling pathways, nuclear translocation & DNA binding of eight host transcription factors, and expression of nine host response proteins over six time points encompassing exposures to live fungus and the secretome thereof. The resulting dataset, comprised of more than 1000 data points, reveals that pneumocytes mount differential responses to A. fumigatus spores, hyphae and soluble secreted products via the NF-kB, JNK, and JNK + p38 pathways respectively. Importantly, via selective degradation of host pro-inflammatory (IL-6 and IL-8) cytokines and growth factors (FGF-2), fungal secreted products reorchestrate the host response to fungal challenge as well as driving multiparametric epithelial damage, culminating in cytolysis. Dysregulation of NF-kB signalling, involving iterative stimulation of canonical and non-canonical signalling, was identified as a significant feature of host damage both in vitro and in a mouse model of invasive aspergillosis. Our data demonstrate that composite tissue damage results from iterative exposures to different fungal morphotypes and secreted products and suggest that modulation of host responses to fungal challenge might represent a unified strategy for therapeutic control of pathologically distinct types of Aspergillus-related disease.IMPORTANCEPulmonary aspergillosis is a spectrum of diseases caused primarily by Aspergillus fumigatus. This fungus is ubiquitous in the environment and grows as a mold, which harbors and disperses spores into the environment. Like other airborne pathogens, the lung mucosa is the first point of contact with the fungus post inhalation. The outcome and severity of disease depends on the host-fungal interaction at the lung interface. We studied how the human lung interacts with spore, germ tube and hyphae growth forms to understand the sequence and dynamics of the early events, which are critical drivers of disease development and progression. Our work is significant in identifying, in response to fungal secreted products, non-canonical NF-kB activation via RelB as being a driving factor in fungus-mediated lung damage. This process could be modulated therapeutically to protect the integrity of infected lung mucosae.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3