Epigenetic regulation of translation repression in ferroptosis, and a role of Alternative splicing and tRNA methylation

Author:

Rashad SherifORCID,Saigusa Daisuke,Zhou Yuan,Zhang Liyin,Tominaga Teiji,Niizuma KuniyasuORCID

Abstract

AbstractFerroptosis is a non-apoptotic cell death mechanism characterized by the production of lipid peroxides. Ferroptosis plays important roles in many diseases such as cancer and neurodegenerative diseases. While many effectors in the ferroptosis pathway have been mapped, its epigenetic and epitranscriptional regulatory processes are not yet fully understood. Ferroptosis can be induced via system xCT inhibition (Class I) or GPX4 inhibition (Class II). Previous works have revealed important differences in cellular response to Class I and Class II ferroptosis inducers. Importantly, blocking mRNA transcription or translation appears to protect cells against Class I ferroptosis inducing agents but not Class II. Understanding these subtle differences is important in understanding ferroptosis as well as in developing therapeutics based on ferroptosis for various diseases. In this work, we examined the impact of blocking transcription (via Actinomycin D) or translation (via Cycloheximide) on Erastin (Class I) or RSL3 (Class II) induced ferroptosis. Blocking transcription or translation protected cells against Erastin but was detrimental against RSL3. Cycloheximide led to increased levels of GSH alone or when co-treated with Erastin and the activation of the reverse transsulfuration pathway. RNA sequencing analysis revealed an important and unexplored role of Alternative splicing (AS) in regulating ferroptosis stress response and mRNA translation repression. Our results indicated that translation repression is protective against Erastin but detrimental against RSL3. We tested this theory in Alkbh1 overexpressing glioma cells. Alkbh1 demethylates tRNA and represses translation and is associated with worse outcome in glioma patients. Our results showed that Alkbh1 overexpression protected glioma cells against Erastin but was detrimental against RSL3.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3