A Machine Learning Approach to Identify Small Molecule Inhibitors of Secondary Nucleation in α-Synuclein Aggregation

Author:

Horne Robert I.,Possenti Andrea,Chia Sean,Brotzakis Z. Faidon,Staats Roxine,Nowinska Magdalena,Vendruscolo Michele

Abstract

AbstractDrug development is an increasingly active area of application of machine learning methods, due to the need to overcome the high attrition rates of conventional drug discovery pipelines. This issue is especially pressing for neurodegenerative diseases where very few disease-modifying drugs have been approved. To address this problem, we describe a machine learning approach to identify specific inhibitors of the proliferation of α-synuclein aggregates through secondary nucleation, a process that has been implicated in Parkinson’s disease and related synucleinopathies. We use a combination of docking simulations followed by machine learning to first identify initial hit compounds and then explore the chemical space around these compounds. Our results demonstrate that this approach leads to the identification of novel chemical matter with an improved hit rate and potency over conventional similarity search approaches.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3