On biological flow networks: Antagonism between hydrodynamic and metabolic stimuli as driver of topological transitions

Author:

Kramer FelixORCID,Modes Carl D.ORCID

Abstract

AbstractA plethora of computational models have been developed in recent decades to account for the morphogenesis of complex biological fluid networks, such as capillary beds. Contemporary adaptation models are based on optimization schemes where networks react and adapt toward given flow patterns. Doing so, a system reduces dissipation and network volume, thereby altering its final form. Yet, recent numeric studies on network morphogenesis, incorporating uptake of metabolites by the embedding tissue, have indicated the conventional approach to be insufficient. Here, we systematically study a hybrid-model which combines the network adaptation schemes intended to generate space-filling perfusion as well as optimal filtration of metabolites. As a result, we find hydrodynamic stimuli (wall-shear stress) and filtration based stimuli (uptake of metabolites) to be antagonistic as hydrodynamically optimized systems have suboptimal uptake qualities and vice versa. We show that a switch between different optimization regimes is typically accompanied with a complex transition between topologically redundant meshes and spanning trees. Depending on the metabolite demand and uptake capabilities of the adaptating networks, we are further able to demonstrate the existence of nullity re-entrant behavior and the development of compromised phenotypes such as dangling non-perfused vessels and bottlenecks.Author summaryBiological flow networks, such as capillaries, do not grow fully developed and matured in their final and functional form. Instead they grow a rudimentary network which self-organizes bit by bit in the context of their surrounding tissue, perfusion and other stimuli. Interestingly, it has been repeatedly shown that this development is mechano-transductional in nature, coupling complex bio-chemical signaling to mechanical cues such as wall-shear stress. In accordance with previous studies we propose a minimal hybrid model that takes into account stimuli in the form of the actual metabolite uptake of the surrounding tissue and the conventional wall-shear stress approach, and incorporate these into the metabolic cost function scheme. We present a numeric evaluation of our model, displaying the antagonistic interplay of uptake and shear stress driven morphogenesis as well as the topological ramifications and frustrated network formations, i.e. dangling branches, bottlenecks and re-entrant behavior in terms of redundancy transitions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3