The challenge of SARS-CoV-2 environmental monitoring in schools using floors and portable HEPA filtration units: Fresh or relic RNA?

Author:

Zuniga-Montanez Rogelio,Coil David A.ORCID,Eisen Jonathan A.ORCID,Pechacek Randi,Guerrero Roque G.,Kim Minji,Shapiro KarenORCID,Bischel Heather N.ORCID

Abstract

AbstractTesting surfaces in school classrooms for the presence of SARS-CoV-2, the virus that causes COVID-19, can provide public-health information that complements clinical testing. We monitored the presence of SARS-CoV-2 RNA in five schools (96 classrooms) in Davis, California (USA) by collecting weekly surface-swab samples from classroom floors and/or portable high-efficiency particulate air (HEPA) units. Twenty-two surfaces tested positive, with qPCR cycle threshold (Ct) values ranging from 36.07–38.01. Intermittent repeated positives in a single room were observed for both floor and HEPA filter samples for up to 52 days, even following regular cleaning and HEPA filter replacement after a positive result. We compared the two environmental sampling strategies by testing one floor and two HEPA filter samples in 57 classrooms at Schools D and E. HEPA filter sampling yielded 3.02% and 0.41% positivity rates per filter sample collected for Schools D and E, respectively, while floor sampling yielded 0.48% and 0% positivity rates. Our results indicate that HEPA filter swabs are more sensitive than floor swabs at detecting SARS-CoV-2 RNA in interior spaces. During the study, all schools were offered weekly free COVID-19 clinical testing. On-site clinical testing was offered in Schools D and E, and upticks in testing participation were observed following a confirmed positive environmental sample. However, no confirmed COVID-19 cases were identified among students associated with classrooms yielding positive environmental samples. The positive samples detected in this study appeared to reflect relic viral RNA from individuals infected before the monitoring program started and/or RNA transported into classrooms via fomites. The high-Ct positive results from environmental swabs further suggest the absence of active infections. Additional research is needed to differentiate between fresh and relic SARS-CoV-2 RNA in environmental samples and to determine what types of results should trigger interventions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3