Over 400 million years of cooperation: Untangling the chondrocranium-dermatocranium connection

Author:

Motch Perrine Susan M.ORCID,Pitirri M. KathleenORCID,Durham Emily L.ORCID,Kawasaki MizuhoORCID,Zheng HaoORCID,Chen Danny Z.ORCID,Kawasaki KazuhikoORCID,Richtsmeier Joan T.ORCID

Abstract

AbstractThe cranial endo- and dermal skeletons, which comprise the vertebrate skull, evolved independently and form separately during embryogenesis. In mammals, the mostly cartilaginous cranial endoskeleton forms prior to the bony dermatocranium. Many features of the chondrocranium are transient, undergoing endochondral ossification or disappearing, so its role in skull morphogenesis is not understood The fibroblast growth factor (FGF) and receptor (FGFR) signaling pathway contributes significantly to the regulation of osteochondroprogenitor cell function. Mutations in FGFR genes are associated with diseases that impact the skull including dwarfing chondrodyplasia and craniosynostosis syndromes. We investigate the developing chondrocranium and dermatocranium using a mouse model for craniosynostosis carrying a gain of function mutation in Fgfr2 to assess development of these cranial skeleton systems. Dermatocrania and chondrocrania of Fgfr2cC342Y/+ mice and their Fgfr2c+/+ littermates were quantified in 3D from microcomputed tomography images of mouse embryos. Chondrocrania of embryonic mice carrying the Fgfr2 mutation are larger than their Fgfr2c+/+ littermates and include novel extensions of cartilage over the lateral and dorsal aspect of the brain. Like the forming chondrocranium, the embryonic dermatocranium is larger in Fgfr2cC342Y/+ mice throughout embryogenesis but after disappearance of much of the chondrocranium, the dermatocranium becomes progressively smaller relative to Fgfr2c+/+ littermates during postnatal growth. Results reveal the direct effects of this Fgfr2c mutation on embryonic cranial cartilage, the impact of chondrocranial structure on developing dermatocranial elements, the importance of the chondrocranium in decoding the impact of specific genetic variants on head morphogenesis, and the potential for harnessing these effects as therapeutic targets.Significance StatementWe present the first fully complete three-dimensional (3D) reconstructions of the mouse embryonic chondrocranium using a novel methodology of uncertainty guided segmentation of microcomputed tomography images with sparse annotation. We provide 3D reconstructions of chondrocrania of the Fgfr2cC342Y/+ Crouzon syndrome mouse and typically developing littermates for embryonic days 13.5, 14.5, 15.5, 16.5, and 17.5. This is the first study of the effects of an FGFR2 mutation on embryonic chondrocranial cartilage. 3D reconstructions of embryonic dermal bones reveal that the dermatocranium develops outside of, and in shapes that conform to the chondrocranium. Our findings have implications for the study and treatment of human craniofacial disease and for understanding the impact of chondrocranial morphology on the evolution of skull morphology.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

1. K. V. Kardong , Vertebrates. Anatomy, Function, Evolution, sixth (McGraw-Hill, 2012).

2. K. Kawasaki , J. Richtsmeier , “Association of the chondrocranium and dermatocranium in early skull development” in Building Bones: Early Bone Development Informing Anthropological Inquiry, Cambridge Studies in Biological and Evolutionary Anthropology., C. Percival , J. Richtsmeier , Eds. (Cambridge University Press, 2017), pp. 52–78.

3. K. Kawasaki , J. Richtsmeier , “Appendix to Chapter 3” in Building Bones: Bone Formation and Development in Anthropology, Cambridge Studies in biological and evolutionary anthropology., C. Percival , J. Richtsmeier , Eds. (Cambridge University Press, 2017), pp. 303–315.

4. It takes two: Building the vertebrate skull from chondrocranium and dermatocranium;Vertebrate Zoology,2020

5. de Beer, G , Development of the vertebrate skull (Oxford University Press, 1937).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3