Calcium fluctuations drive morphological patterning at the onset of Hydra morphogenesis

Author:

Braun ErezORCID

Abstract

ABSTRACTMorphogenesis in animal development involves significant morphological transitions leading to the emerging body plan of a mature animal. Understanding how the collective physical processes drive robust morphological patterning requires a coarse-grained description of the dynamics and the characterization of the underlying fields. Here I show that calcium spatial fluctuations serve as an integrator field of the electrical-mechanical processes of morphogenesis in whole-body Hydra regeneration and drive the morphological dynamics. We utilize external electric fields to control the developmental process and study a critical transition in morphogenesis, from the initial spheroidal shape of the tissue to an elongated cylindrical shape defining the body plan of a mature animal. Morphogenesis paused under external voltage is associated with a significant increase of the calcium activity compared with the activity supporting normal development. The enhanced calcium activity is characterized by intensified spatial fluctuations, extended spatial correlations across the tissue and faster temporal fluctuations. In contrast, the normal morphogenesis process is characterized by relatively moderate calcium fluctuation activity and restrained spatial correlations. Long-range communication however, is essential for development. Blocking gap-junctions halts morphogenesis by suppressing the long-range electrical communication, severely reducing the overall calcium activity and enhancing its localization in the tissue. Normal calcium activity is resumed following the wash of the blocker drug, leading to a morphological transition characterizing a normal regeneration process and the emergence of a mature animal. Our methodology of controlling morphogenesis by a physical electric field allows us to gain a global statistical view of the dynamics. It shows that the normalized calcium spatial fluctuations exhibit a universal shape distribution, across tissue samples and conditions, suggesting the existence of a global constrain over these fluctuations. Studying the correlations in space and time of the calcium fluctuation field at the onset of morphogenesis opens a new vista on this process and paints a picture of development analogous to a dynamical phase transition.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3