Variation in root exudate composition influences soil microbiome membership and function

Author:

Seitz Valerie AORCID,McGivern Bridget B,Borton Mikayla A,Chaparro Jacqueline M,Daly Rebecca A,Sheflin Amy M,Kresovich Stephen,Shields Lindsay,Schipanski Meagan E,Wrighton Kelly C,Prenni Jessica E

Abstract

AbstractRoot exudation is one of the primary processes that mediate interactions between plant roots, microorganisms, and the soil matrix. Previous research has shown that plant root exudate profiles vary between species and genotypes which can likely support different microbial associations. Here, utilizing distinct sorghum genotypes as a model system, we characterized the chemical heterogeneity between root exudates and the effects of that variability on soil microbial membership and metabolisms. Distinct exudate chemical profiles were quantified and used to formulate synthetic root exudate treatments, a High Organic acid Treatment (HOT) and a High Sugar Treatment (HST). Root exudate treatments were added to laboratory soil reactors and 16S rRNA gene profiling illustrated distinct microbial membership in response to HST or HOT amendments. Alpha and beta diversity metrics were significantly different between treatments, (Shannon’s, p < 0.0001, mrpp = 0.01, respectively). Exometabolite production was highest in the HST, with increased production of key organic acids, non-proteinogenic amino acids, and three plant growth-promoting phytohormones (benzoic acid, salicylic acid, indole-3-acetic acid), suggesting plant-derived sugars fuel microbial carbon metabolism and contribute to phytohormone production. Linking the metabolic capacity of metagenome-assembled genomes in the HST to the exometabolite patterns, we identified potential plant growth-promoting microorganisms that could produce these phytohormones. Our findings emphasize the tractability of high-resolution multi-omics tools to investigate soil microbiomes, opening the possibility of manipulating native microbial communities to improve specific soil microbial functions and enhance crop production.ImportanceUnderstanding interactions between plant root exudates and the soil microbiome provides an avenue for a more comprehensive appreciation for how plant roots modulate their microbial counterparts to promote an environment favorable to plant fitness. Although these dynamics are appreciated as indispensable, mechanisms controlling specific rhizobiome membership and complexity are not fully understood. In this study, we investigate how variability in root exudation, modeled after differences observed between distinct sorghum genotypes, contributes to altered microbial membership and metabolisms. The results demonstrate how microbial diversity is influenced by root exudates of differing chemical composition and how changes in microbial membership correspond to modifications in carbon utilization and enhance production of plant-relevant metabolites. Our findings suggest carbon substrate preferences among bacteria in semi-arid climate soils and mechanisms for root exudate utilization. These findings provide new information on plant-soil environments useful for the development of efficient and precise microbiota management strategies in agricultural systems.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FUNCTIONING OF MICROORGANISMS IN THE RHIZOSPHERE OF PLANTS;Journal of microbiology, biotechnology and food sciences;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3