Tuning spherical cells into kinking helices in wall-less bacteria

Author:

Lartigue CaroleORCID,Lambert BastienORCID,Rideau FabienORCID,Decossas MarionORCID,Hillion MélanieORCID,Douliez Jean-PaulORCID,Hardouin JulieORCID,Lambert OlivierORCID,Blanchard AlainORCID,Béven LaureORCID

Abstract

AbstractIn bacteria, cell shape is determined and maintained through a complex interplay between the peptidoglycan cell wall and cytoplasmic filaments made of polymerized MreB. Spiroplasma species, members of the Mollicutes class, challenge this general understanding because they are characterized by a helical cell shape and motility without a cell wall. This specificity is thought to rely on five MreB isoforms and a specific fibril protein. In this study, combinations of these five MreBs and of the fibril from Spiroplasma citri were expressed in another Mollicutes, Mycoplasma capricolum. Mycoplasma cells that were initially pleomorphic, mostly spherical, turned into helices when MreBs and fibrils were expressed in this heterologous host. The fibril protein was essential neither for helicity nor for cell movements. The isoform MreB5 had a special role as it was sufficient to confer helicity and motility to the mycoplasma cells. Cryo-electron microscopy confirmed the association of MreBs and fibril-based cytoskeleton with the plasma membrane, suggesting a direct effect on the membrane curvature. Finally, the heterologous expression of these proteins, MreBs and fibril, made it possible to reproduce the kink-like motility of spiroplasmas without providing the ability of cell movement in liquid broth. We suggest that other Spiroplasma components, not yet identified, are required for swimming, a hypothesis that could be evaluated in future studies using the same model.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3