Interleukin-6 Drives Key Pathologic Outcomes in Experimental Acetaminophen-induced Liver Failure

Author:

Roth Katherine,Strickland Jenna,Gonzalez-Pons Romina,Pant Asmita,Yen Ting-Chieh,Freeborn Robert,Kennedy Rebekah,Bhushan Bharat,Boss Allison,Rockwell Cheryl E.,Dorrance Anne M.,Apte Udayan,Luyendyk James P.,Copple Bryan L.

Abstract

AbstractBackground and AimsIn severe cases of acetaminophen (APAP) overdose, acute liver injury rapidly progresses to acute liver failure (ALF), producing life-threatening complications including, hepatic encephalopathy (HE) and multi-organ failure (MOF). Systemic levels of interleukin-6 (IL-6) and IL-10 are highest in ALF patients with the most severe complications and the poorest prognosis. The mechanistic basis for dysregulation of these cytokines, and their association with outcome in ALF, remain poorly defined.MethodsTo investigate the impact of IL-6 and IL-10 in ALF, we used an experimental setting of failed liver repair after APAP overdose in which a high dose of APAP is administered (i.e., 500-600 mg/kg). Mice were treated with neutralizing antibodies to block IL-6 and IL-10.ResultsIn mice with APAP-induced ALF, high levels of IL-10 reduced monocyte recruitment and trafficking in the liver resulting in impaired clearance of dead cell debris. Kupffer cells in these mice, displayed features of myeloid-derived suppressor cells, including high level expression of IL-10 and PD-L1, which were increased in an IL-6-dependent manner. Similar to ALF patients with HE, cerebral blood flow was reduced in mice with APAP-induced ALF. Remarkably, although IL-6 is hepatoprotective in mice treated with low doses of APAP (i.e., 300 mg/kg), IL-6 neutralization in mice with APAP-induced ALF fully restored cerebral blood flow and reduced mortality.ConclusionCollectively, these studies demonstrate that exaggerated production of IL-6 in APAP-induced ALF triggers immune suppression (i.e., high levels of IL-10 and PD-L1), reduces cerebral blood flow (a feature of hepatic encephalopathy), disrupts liver repair (i.e., failed clearance of dead cells), and increases mortality.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3