Computational and biochemical analyses reveal that cofilin-2 self assembles into amyloid-like structures and promotes the aggregation of other proteinaceous species: Pathogenic relevance to myopathies

Author:

Kaushik Vibha,Hanschmann Eva-Maria,Brünnert Daniela,Prerna Kumari,Anand Bibin G.,Sharma Phulwanti Kumari,Kar Karunakar,Goyal PankajORCID

Abstract

AbstractCofilin-2 is a member of the ADF/cofilin family, expressed extensively in adult muscle cells and involved in muscle maintenance and regeneration. Phosphorylated cofilin-2 is found in pre-fibrillar aggregates formed during idiopathic dilated cardiomyopathy. A recent study shows that phosphorylated cofilin-2, under oxidative distress, forms fibrillar aggregates. However, it remains unknown if cofilin-2 holds an innate propensity to form amyloid-like structures. In the present study, we employed various computational and biochemical techniques to explore the amyloid-forming potential of cofilin-2. We report that cofilin-2 possesses aggregation-prone regions (APRs), and these APRs get exposed to the surface, become solvent-accessible, and are involved in the intermolecular interactions during dimerization, an early stage of aggregation. Furthermore, the cofilin-2 amyloids, formed under physiological conditions, are capable of cross-seeding other monomeric globular proteins and amino acids, thus promoting their aggregation. We further show that Cys-39 and Cys-80 are critical in maintaining the thermodynamic stability of cofilin-2. The destabilizing effect of oxidation at Cys-39 but not that at Cys-80 is mitigated by Ser-3 phosphorylation. Cysteine oxidation leads to partial unfolding and loss of structure, suggesting that cysteine oxidation further induces early events of cofilin-2 aggregation. Overall, our results pose a possibility that cofilin-2 amyloidogenesis might be involved in the pathophysiology of diseases, such as myopathies. We propose that the exposure of APRs to the surface could provide mechanistic insight into the higher-order aggregation and amyloidogenesis of cofilin-2. Moreover, the cross-seeding activity of cofilin-2 amyloids hints towards its involvement in the hetero-aggregation in various amyloid-linked diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3