Potential effects of life history on demographic genetic structure in stage-structured plant populations

Author:

Tsuzuki YoichiORCID,Takada Takenori,Ohara MasashiORCID

Abstract

AbstractStanding genetic variation, or genetic diversity, is a source of adaptive evolution, and is crucial for long-term population persistence under environmental changes. One empirical method to predict the temporal dynamics of standing genetic variation in age- or stage-structured populations is to compare genetic diversity and composition among age/stage classes. The resultant within-population genetic structure, sometimes referred to as demographic genetic structure, has been regarded as a proxy of potential genetic changes that accompany sequential generation turnover. However, especially in stage-structured plant populations, individuals in more juvenile stages do not necessarily represent future populations, as they might die, stop growing, or retrogress over the course of life history. How demographic genetic structure is subjected to life history and whether it is a good proxy of temporal genetic dynamics had remained unclear. Here, we developed a matrix model which well describes temporal dynamics of expected heterozygosity, a common proxy of genetic diversity, for a neutral locus in stage-structured populations under equilibrium assumption. Based on the model, two indices of demographic genetic structure were formulated: relative ratio of expected heterozygosity and genetic differentiation among stage classes. We found that the two indices were largely determined by stable stage distribution and population size, and that they did not show clear correlations with the change rate of genetic diversity, indicating that inferring future genetic diversity from demographic genetic structure conventionally is misleading. Our study facilitates reliable interpretation on empirical demographic genetic data.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3