Potassium effects on NCC are attenuated during inhibition of Cullin E3-ubiquitin ligases

Author:

Murali Sathish K,Little Robert,Poulsen Søren B,Ferdaus Mohammed Z,Ellison David H,McCormick James A,Fenton Robert A

Abstract

AbstractThe thiazide sensitive sodium-chloride co-transporter (NCC) plays a vital role in maintaining sodium (Na+) and potassium (K+) homeostasis. NCC activity is modulated by the with-no-lysine kinases 1 and 4 (WNK1 and WNK4), the abundance of which are controlled by the RING-type E3 ligase Cullin 3 (Cul3) and its substrate adapter Kelch-like protein 3. Dietary K+ intake has an inverse correlation with NCC activity, but the mechanism underlying this phenomenon remains to be fully elucidated. Here, we investigated the involvement of other members of the Cullin family in mediating K+ effects on NCC phosphorylation (active form) and abundance. In kidneys from mice fed diets varying in K+ content, there were negative correlations between NCC (phosphorylated and total) and active (neddylated) forms of Cullins (Cul1, 3, 4 and 5). High dietary K+ effects on phosphorylated NCC were attenuated in Cul3 mutant mice (CUL3-Het/Δ9). Short-term (30 min) and long-term (24 h) alterations in the extracellular K+ concentration did not affect Cullin neddylation levels in ex vivo renal tubules. Short-term, the ability of high extracellular K+ to decrease NCC phosphorylation was preserved in the presence of MLN4924 (pan Cullin inhibitor), but the response to low extracellular K+ was absent. Long-term, MLN4924 attenuated the effects of high extracellular K+ on NCC phosphorylation and responses to low extracellular K+ were absent. Our data suggest that in addition to Cul3, other Cullins are involved in mediating the effects of K+ on NCC phosphorylation and abundance.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potassium homeostasis: sensors, mediators, and targets;Pflügers Archiv - European Journal of Physiology;2022-06-21

2. Combined Kelch-like 3 and Cullin 3 Degradation is a Central Mechanism in Familial Hyperkalemic Hypertension in Mice;Journal of the American Society of Nephrology;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3