Abstract
AbstractModulation of dopamine transmission evokes strong behavioral effects that can be achieved by psychoactive drugs such as haloperidol or cocaine. Cocaine non-specifically increases dopamine transmission by blocking dopamine active transporter (DAT) and evokes behavioral arousal, while haloperidol is a non-specific dopamine D2 receptor antagonist with sedative effects. Interestingly, dopamine has been found to affect immune cells in addition to its action in the central nervous system. Here we address the possible interactions between haloperidol and cocaine and their effects on both immune cells and behavior in freely moving rats. We use an intravenous model of haloperidol and binge cocaine administration to evaluate the drugs’ impact on the distribution of lymphocyte subsets in both the peripheral blood and the spleen. We assess the drugs’ behavioral effects by measuring locomotor activity. Cocaine evoked a pronounced locomotor response and stereotypic behaviors, both of which were completely blocked after pretreatment with haloperidol. The results suggest that blood lymphopenia which was induced by haloperidol and cocaine (except for NKT cells), is independent of dopaminergic activity and most likely results from the massive secretion of corticosterone. Haloperidol pretreatment prevented the cocaine-induced decrease in NKT cell numbers. On the other hand, the increased systemic dopaminergic activity after cocaine administration is a significant factor in retaining T CD4+ and B lymphocytes in the spleen.Abstract Figure
Publisher
Cold Spring Harbor Laboratory