QT-GILD: Quartet based gene tree imputation using deep learning improves phylogenomic analyses despite missing data

Author:

Mahbub Sazan,Sawmya Shashata,Saha Arpita,Reaz Rezwana,Rahman M. Sohel,Bayzid Md. Shamsuzzoha

Abstract

AbstractSpecies tree estimation is frequently based on phylogenomic approaches that use multiple genes from throughout the genome. However, for a combination of reasons (ranging from sampling biases to more biological causes, as in gene birth and loss), gene trees are often incomplete, meaning that not all species of interest have a common set of genes. Incomplete gene trees can potentially impact the accuracy of phylogenomic inference. We, for the first time, introduce the problem of imputing the quartet distribution induced by a set of incomplete gene trees, which involves adding the missing quartets back to the quartet distribution. We present QT-GILD, an automated and specially tailored unsupervised deep learning technique, accompanied by cues from natural language processing (NLP), which learns the quartet distribution in a given set of incomplete gene trees and generates a complete set of quartets accordingly. QT-GILD is a general-purpose technique needing no explicit modeling of the subject system or reasons for missing data or gene tree heterogeneity. Experimental studies on a collection of simulated and empirical data sets suggest that QT-GILD can effectively impute the quartet distribution, which results in a dramatic improvement in the species tree accuracy. Remarkably, QT-GILD not only imputes the missing quartets but it can also account for gene tree estimation error. Therefore, QT-GILD advances the state-of-the-art in species tree estimation from gene trees in the face of missing data. QT-GILD is freely available in open source form at https://github.com/pythonLoader/QT-GILD.

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

1. Gene Trees in Species Trees

2. Discordance of species trees with their most likely gene trees;PLoS Genetics,2006

3. GENE TREE DISTRIBUTIONS UNDER THE COALESCENT PROCESS

4. Testing the Constant-Rate Neutral Allele Model with Protein Sequence Data

5. M. Nei . Stochastic errors in DNA evolution and molecular phylogeny. In H. Gershowitz , D. L. Rucknagel , and R. E. Tashian , editors, Evolutionary Perspectives and the New Genetics, pages 133 – 147, 1986.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3