An interolog-based barley interactome as an integration framework for immune signaling

Author:

Velásquez-Zapata ValeriaORCID,Elmore J. MitchORCID,Fuerst GregORCID,Wise Roger P.ORCID

Abstract

ABSTRACTThe barley MLA nucleotide-binding, leucine-rich-repeat (NLR) receptor and its orthologs confer recognition specificity to many cereal diseases, including powdery mildew, stem and stripe rust, Victoria blight, and rice blast. We used interolog inference to construct a barley protein interactome (HvInt) comprising 66133 edges and 7181 nodes, as a foundation to explore signaling networks associated with MLA. HvInt was compared to the experimentally validated Arabidopsis interactome of 11253 proteins and 73960 interactions, verifying that the two networks share scale-free properties, including a power-law distribution and small-world network. Then, by successive layering of defense-specific ‘omics’ datasets, HvInt was customized to model cellular response to powdery mildew infection. Integration of HvInt with expression quantitative trait loci (eQTL) enabled us to infer disease modules and responses associated with fungal penetration and haustorial development. Next, using HvInt and an infection-time-course transcriptome, we assembled resistant (R) and susceptible (S) subnetworks. The resulting differentially co-expressed (R-S) interactome is essential to barley immunity, facilitates the flow of signaling pathways and is linked to Mla through trans eQTL associations. Lastly, next-generation, yeast-two-hybrid screens identified fifteen novel MLA interactors, which were incorporated into HvInt, to predict receptor localization, and signaling response. These results link genomic, transcriptomic, and physical interactions during MLA-specified immunity.AUTHOR SUMMARYPowdery mildew fungi infect more than 9,500 agronomic and horticultural plant species. In order to prevent economic loss due to diseases caused by pathogens, plant breeders incorporate resistance genes into varieties that are grown for food, feed, fuel and fiber. One of these resistance genes encodes the barley MLA immune receptor, an ancestral cereal protein that confers recognition to powdery mildew, stem and stripe rust, rice blast and Victoria blight. However, in order to function properly, these immune receptors must interact with additional proteins and protein complexes during the different stages of fungal infection and plant defense. We used a combination of computational- and laboratory-based methods to predict over 66,000 possible protein-protein interactions in barley. This network of proteins was then integrated with various defense-specific datasets to assemble the molecular building blocks associated with resistance to the powdery mildew pathogen, in addition to those proteins that interact with the MLA immune receptor. Our application of genome-scale, protein-protein interaction data provides a foundation to decipher the complex molecular components that control immune responses in crops.

Publisher

Cold Spring Harbor Laboratory

Reference132 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3