Abstract
ABSTRACTNon-small cell lung cancers demonstrate intrinsic resistance to cell death even in response to chemotherapy. Previous work suggested that defective nuclear translocation of active caspase 3 may play a role in resistance to cell death. Separately, our group has identified that mitogen activated protein kinase activated protein kinase 2 (MK2) is required for nuclear translocation of active caspase 3 in the execution of apoptosis. This study demonstrates a relatively low expression of MK2 in non-small cell lung carcinoma cell lines compared to small cell carcinoma cell lines. Further, overexpression of MK2 in non-small cell lung carcinoma cell lines results in increased caspase 3 activity and caspase 3 mediated cell death. Higher MK2 transcript levels were observed in patients with earlier-stage non-small cell lung cancer. Higher expression of MK2 is associated with better survival in patients with early stage non-small cell lung cancer across two independent clinical datasets. Using data sets spanning multiple cancer types, we observed improved survival with higher MK2 expression was unique to lung adenocarcinoma. Mechanistically, MK2 promotes nuclear translocation of caspase 3 leading to PARP1 cleavage and execution of cell death. While MK2 can directly phosphorylate caspase 3, neither phosphorylation status of caspase 3 nor the kinase activity of MK2 impacts caspase 3 activation, nuclear translocation and execution of cell death. Rather, a non-kinase function of MK2, specifically trafficking via its nuclear localization sequence, is required for caspase 3 mediated cell death. In summary this study highlights the importance of a non-enzymatic function of MK2 in the execution of apoptosis, which may be leveraged in the adjunctive treatment of NSCLC or other conditions where regulation of apoptosis is crucial.
Publisher
Cold Spring Harbor Laboratory