Abstract
Diffusion theory is a central tool of modern population genetics, yielding simple expressions for fixation probabilities and other quantities that are not easily derived from the underlying Wright-Fisher model. Unfortunately, the textbook derivation of diffusion equations as scaling limits requires evolutionary parameters (selection coefficients, mutation rates) to scale like the inverse population size—a severe restriction that does not always reflect biological reality. Here we note that the Wright-Fisher model can be approximated by diffusion equations under more general conditions, including in regimes where selection and/or mutation are strong compared to genetic drift. As an illustration, we use a diffusion approximation of the Wright-Fisher model to improve estimates for the expected time to fixation of a strongly deleterious allele, i.e. the rate of Muller’s ratchet.
Publisher
Cold Spring Harbor Laboratory