On selection-regulated population dynamics in birds and mammals

Author:

Witting LarsORCID

Abstract

AbstractI use the North American Breeding Bird Survey (Sauer et al. 2017) to construct 462 population trajectories with about 50 yearly abundance estimates each. Applying AIC model-selection, I find that selection-regulated population dynamics is 25, 000 (95%:0.42–1.7e17) times more probable than density-regulated growth. Selection is essential in 94% of the best models explaining 82% of the population dynamics variance across the North American continent. Similar results are obtained for 111, 215, and 420 populations of British birds (BTO 2020), Danish birds (DOF 2020), and birds and mammals in the Global Population Dynamic Database (GPDD 2010).The traditional paradigm—that the population dynamic growth rate is a function of the environment, with maximal per-capita growth at low population densities, and sub-optimal reproduction from famine at carrying capacities with strong competition for limited resources—is not supported. Selection regulation generates a new paradigm where the world is green and individuals are selected to survive and reproduce at optimal levels at population dynamic equilibria with sufficient resources. It is only the acceleration of the population dynamic growth rate, and not the growth rate itself, that is determined by the density-dependent environment, with maximal growth occurring at the densities of the population dynamic equilibrium.

Publisher

Cold Spring Harbor Laboratory

Reference119 articles.

1. The Stabilizing Effect of Intraspecific Genetic Variation on Population Dynamics in Novel and Ancestral Habitats

2. Akaike H. (1973). Information theory as an extension of the maximum likelihood principle. In: Petrov B.N. Csaki F. (eds). Second International Symposium on Information Theory: Akademiai Kiado, pp 267–281.

3. Population dynamic consequences of delayed life-history effects

4. Evolutionary rescue;Ann. Rev. Ecol. Evol. Syst,2017

5. Evolutionary rescue can prevent extinction following environmental change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3