Transcriptional expression changes during compensatory plasticity in the prothoracic ganglion of the adult cricket Gryllus bimaculatus

Author:

Wang Felicia,Fisher Harrison,Morse Maeve,Ledwidge Lisa L.,O’Brien Jack,Kingston Sarah E.,Beckman Justin,Johnson Jasmine J.,Miranda Portillo Lyn S.,Al Musawi Tabarak N.,Rubenstein Alexandra W.,Michaelson David A.,Horch Hadley WilsonORCID

Abstract

AbstractMost adult organisms are limited in their capacity to recover from neurological damage. The auditory system of the Mediterranean field cricket, Gryllus bimaculatus, presents a compelling model for investigating neuroplasticity due to its unusual capabilities for structural reorganization into adulthood. Specifically, the dendrites of the central auditory neurons of the prothoracic ganglion sprout in response to the loss of auditory afferents. Deafferented auditory dendrites grow across the midline, a boundary they normally respect, and form functional synapses with the contralateral auditory afferents, restoring tuning-curve specificity. The molecular pathways underlying these changes are entirely unknown. Here, we used a multiple k-mer approach to re-assemble a previously reported prothoracic ganglion transcriptome that included ganglia collected one, three, and seven days after unilateral deafferentation in adult, male animals. We used EdgeR and DESeq2 to perform differential expression analysis and we examined Gene Ontologies to further understand the potential molecular basis of this compensatory anatomical plasticity. Enriched GO terms included those related to protein translation and degradation, enzymatic activity, and Toll signaling. Extracellular space GO terms were also enriched and included the upregulation of several protein yellow family members one day after deafferentation. Investigation of these regulated GO terms help to provide a broader understanding of the types of pathways that might be involved in this compensatory growth and can be used to design hypotheses around identified molecular mechanisms that may be involved in this unique example of adult structural plasticity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3