Effect of landscape structure on genetic structure of the Lesser horseshoe bat (Rhinolophus hipposideros) in Britanny colonies

Author:

Rodriguez Alexandra,Petit Eric

Abstract

AbstractSome species are difficult to observe and others, need to be not disturbed because of their vulnerability. In response to the difficulty of studying the dispersal behaviors of these species, some areas of biology have been combined in order to access the information despite practical limitations. Here we present the combination of several methodologies from landscape ecology to non- invasive population genetics that allow us to obtain important information on Rinolophus hipposideros, a vulnerable European bat. We genotyped 18 georeferrenced colonies in Brittany (France) from droppings collected in their refuges. We used 6 microsatellite markers in order to obtain the genetic distances between them. On the other hand we calculated Euclidian distances between the refuges occupied by these colonies and some ecological distances with the Pathmatrix module of ArcGis 3.2. We tested hypothesis about the difficulty of dispersal of the species in areas without forest cover or with a low density of hedges. Thanks to the Monmonier algorithm we could infer possible genetic barriers between the colonies and we could compare their location to the presence of landscape barriers (areas with little tree cover). We detected a pattern of isolation by distance that reveals limited dispersal capacities in the species but no pattern linked to ecological distances. We found that some of the neighboring colonies with greater genetic distances between them were located in areas with low density of hedges which could suggest an impact of this landscape element in their movements. Finer studies should allow us to conclude on the need or not of forest cover in the dispersal of this species.Abstract Figure

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3