Abstract
AbstractA growing number of restoration projects require large amounts of seeds. As harvesting natural populations cannot cover the demand, wild plants are often propagated in large-scale monocultures. There are concerns that this cultivation process may cause genetic drift and unintended selection, which would alter the genetic properties of the cultivated populations and reduce their genetic diversity. Such changes could reduce the pre-existing adaptation of restored populations, and limit their adaptability to environmental change.We used single nucleotide polymorphism (SNP) markers and a pool-sequencing approach to test for genetic differentiation and changes in gene diversity during cultivation in 19 wild grassland species, comparing the source populations and up to four consecutive cultivation generations grown from these sources. We then linked the magnitudes of genetic changes to the species’ breeding systems and seed dormancy, to understand the roles of these traits in genetic change.The propagation of native seeds for ecosystem restoration changed the genetic composition of the cultivated generations only moderately. The genetic differentiation we observed as a consequence of cultivation was much lower than the natural genetic differentiation between different source regions, and the propagated generations harbored even higher gene diversity than wild-collected seeds. Genetic change was stronger in self-compatible species, probably as a result of increased outcrossing in the monocultures.Synthesis and applicationsOur study indicates that large-scale seed production maintains the genetic integrity of natural populations. Increased genetic diversity may even increase the adaptive potential of propagated seeds, which makes them especially suitable for ecological restoration. However, we have been working with seeds from Germany and Austria, where the seed production is regulated and certified. Whether other seed production systems perform equally well remains to be tested.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献