In vitro reconstitution of divisome activation

Author:

Radler PhilippORCID,Baranova NataliaORCID,Caldas Paulo,Sommer ChristophORCID,López-Pelegrín Mar,Michalik David,Loose MartinORCID

Abstract

AbstractBacterial cell division is coordinated by the Z-ring, a cytoskeletal structure of treadmilling filaments of FtsZ and their membrane anchors, FtsA and ZipA. For divisome maturation and initiation of constriction, the widely conserved actin-homolog FtsA plays a central role, as it links downstream cell division proteins in the membrane to the Z-ring in the cytoplasm. According to the current model, FtsA initiates cell constriction by switching from an inactive polymeric conformation to an active monomeric form, which then stabilizes the Z-ring and recruits downstream proteins such as FtsN. However, direct biochemical evidence for this mechanism is missing so far. Here, we used biochemical reconstitution experiments in combination with quantitative fluorescence microscopy to study the mechanism of divisome activation in vitro. By comparing the properties of wildtype FtsA and FtsA R286W, a gain-of-function mutant thought to mimic its active state, we found that active FtsA outperforms the wildtype protein in replicating FtsZ treadmilling dynamics, filament stabilization and FtsN recruitment. We could attribute these differences to a faster membrane exchange of FtsA R286W as well as its higher packing density below FtsZ filaments. Using FRET microscopy, we also show that binding of FtsN does not compete with, but promotes FtsA self-interaction. Together, our findings shed new light on the assembly and activation of the bacterial cell division machinery and the mechanism of how FtsA initiates cell constriction.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3