Abstract
AbstractRhinoviruses (RV) and inhaled allergens, such as house dust mite (HDM) are the major agents responsible for asthma onset, exacerbations and progression to the severe disease, but the mechanisms of these pathogenic reciprocal virus-allergen interactions are not well understood. To address this, we analyzed mechanisms of airway epithelial sensing and response to RV infection using controlled experimental in vivo RV infection in healthy controls and patients with asthma and in vitro models of HDM exposure and RV infection in primary airway epithelial cells. We found that intranasal RV infection in patients with asthma led to the highly augmented inflammasome-mediated lower airway inflammation detected in bronchial brushes, biopsies and bronchoalveolar lavage fluid. Mechanistically, RV infection in bronchial airway epithelium led to retinoic acid-inducible gene I (RIG-I), but not via NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, which was highly augmented in patients with asthma, especially upon pre-exposure to HDM. This excessive activation of RIG-I inflammasomes was responsible for the impairment of antiviral type I/III interferons (IFN), prolonged viral clearance and unresolved inflammation in asthma in vivo and in vitro. Pre-exposure to HDM amplifies RV-induced epithelial injury in patients with asthma via enhancement of pro-IL1β expression and release, additional inhibition of type I/III IFNs and activation of auxiliary proinflammatory and pro-remodeling proteins. Finally, in order to determine whether RV-induced activation of RIG-I inflammasome may play a role in the susceptibility to severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection in asthma, we analyzed the effects of HDM exposure and RV/SARS-CoV-2 coinfection. We found that prior infection with RV restricted SARS-CoV-2 replication, but co-infection augmented RIG-I inflammasome activation and epithelial inflammation in patients with asthma, especially in the presence of HDM. Timely inhibition of epithelial RIG-I inflammasome activation may lead to more efficient viral clearance and lower the burden of RV and SARS-CoV-2 infections.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献