Abstract
ABSTRACTDirected flows of cells in vivo are essential in morphogenesis. They shape living matter in phenomena involving cell mechanics and regulations of the acto-myosin cytoskeleton. However the onset of coherent motion during collective cell migration is still poorly understood. Here we show that coherence is set by spontaneous alignments of cell polarity by designing cellular rings of controlled dimensions. A tug-of-war between opposite polarities dictates the onset of coherence, as assessed by tracking live cellular shapes and motions in various experimental conditions. In addition, we identify an internally driven constraint by cellular acto-myosin cables at boundaries as essential to ensure coherence and active force is generated as evaluated by the high RhoA activity. Its contribution is required to trigger coherence as shown by our numerical simulations based on a novel Vicsek-type model including free active boundaries. Altogether, spontaneous coherent motion results from basic interplay between cell orientations and active cables at boundaries.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献