Abstract
AbstractSignatures of negative selection are pervasive amongst complex traits and diseases. However, it is unclear whether such signatures exist for DNA methylation (DNAm) that has been proposed to have a functional role in disease. We estimate polygenicity, SNP-based heritability and model the joint distribution of effect size and minor allele frequency (MAF) to estimate a selection coefficient (S) for 2000 heritable DNAm sites in 1774 individuals from the Avon Longitudinal Study of Parents and Children. Additionally, we estimate S for meta stable epi alleles and DNAm sites associated with aging and mortality, birthweight and body mass index. Quantification of MAF-dependent genetic architectures estimated from genotype and DNAm reveal evidence of positive (S > 0) and negative selection (S < 0) and confirm previous evidence of negative selection for birthweight. Evidence of both negative and positive selection highlights the role of DNAm as an intermediary in multiple biological pathways with competing function.
Publisher
Cold Spring Harbor Laboratory