Schema support for forming inferences in the human brain

Author:

Paulus J.P.ORCID,Vignali C.,Coutanche M.N.ORCID

Abstract

AbstractAssociative inference, the process of drawing novel links between existing knowledge to rapidly integrate associated information, is supported by the hippocampus and neocortex. Within the neocortex, the medial prefrontal cortex (mPFC) has been implicated in the rapid cortical learning of new information that is congruent with an existing framework of knowledge, or schema. How the brain integrates associations to form inferences, specifically how inferences are represented, is not well understood. In this study, we investigate how the brain uses schemas to facilitate memory integration in an associative inference paradigm (A-B-C-D). We conducted two event-related fMRI experiments in which participants retrieved previously learned direct (AB, BC, CD) and inferred (AC, AD) associations between word pairs for items that are schema congruent or incongruent. Additionally, we investigated how two factors known to affect memory, a delay with sleep, and reward, modulate the neural integration of associations within, and between, schema. Schema congruency was found to benefit the integration of associates, but only when retrieval immediately follows learning. RSA revealed that neural patterns of inferred pairs (AC) in the PHc, mPFC, and posHPC were more similar to their constituents (AB and BC) when the items were schema congruent, suggesting that schema facilitates the assimilation of paired items into a single inferred unit containing all associated elements. Furthermore, a delay with sleep, but not reward, impacted the assimilation of inferred pairs. Our findings reveal that the neural representations of overlapping associations are integrated into novel representations through the support of memory schema.Significance StatementOur ability to draw novel links between pieces of existing knowledge allows us to understand how information in memory is related. Existing knowledge (memory ‘schema’) can facilitate learning, and then integration, of new related information. We ask how the human brain uses schema to form links between related pieces of information, and how sleep and reward affect this process. Our results suggest that memory schema helps pieces of knowledge become a single inferred unit in the brain’s memory systems. A delay with sleep between learning and retrieval, though not reward, is important for how schema achieve this.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3