Mathematical modeling of the molecular switch of TNFR1-mediated signaling pathways using Petri nets

Author:

Amstein Leonie K.,Ackermann Jörg,Hannig Jennifer,Ðikić IvanORCID,Fulda SimoneORCID,Koch Ina

Abstract

AbstractThe paper describes a mathematical model of the molecular switch of cell survival, apoptosis, and necroptosis in cellular signaling pathways initiated by tumor necrosis factor 1. Based on experimental findings in the current literature, we constructed a Petri net model in terms of detailed molecular reactions for the molecular players, protein complexes, post-translational modifications, and cross talk. The model comprises 118 biochemical entities, 130 reactions, and 299 connecting edges. Applying Petri net analysis techniques, we found 279 pathways describing complete signal flows from receptor activation to cellular response, representing the combinatorial diversity of functional pathways.120 pathways steered the cell to survival, whereas 58 and 35 pathways led to apoptosis and necroptosis, respectively. For 65 pathways, the triggered response was not deterministic, leading to multiple possible outcomes. Based on the Petri net, we investigated the detailed in silico knockout behavior and identified important checkpoints of the TNFR1 signaling pathway in terms of ubiquitination within complex I and the gene expression dependent on NF-κB, which controls the caspase activity in complex II and apoptosis induction.

Publisher

Cold Spring Harbor Laboratory

Reference94 articles.

1. On Functional Module Detection in Metabolic Networks;Metabolites,2013

2. Physicochemical modelling of cell signalling pathways

3. invariants reveal functional pathways in signaling networks;BMC Systems Biology,2017

4. MONALISA for stochastic simulations of Petri net models of biochemical systems;BMC Bioinformatics,2015

5. Lessons from mathematically modeling the NF-κB pathway;Immun Rev,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3