A drug repurposing screen identifies altiratinib as a selective inhibitor of a key regulatory splicing kinase and a potential therapeutic for toxoplasmosis and malaria

Author:

Swale ChristopherORCID,Bellini ValeriaORCID,Bowler Matthew W.ORCID,Flore NardellaORCID,Brenier-Pinchart Marie-PierreORCID,Cannella DominiqueORCID,Belmudes LucidORCID,Mas CarolineORCID,Couté YohannORCID,Laurent FabriceORCID,Scherf ArturORCID,Bougdour AlexandreORCID,Hakimi Mohamed-AliORCID

Abstract

Introductory paragraphThe apicomplexa comprise a large phylum of single-celled, obligate intracellular protozoa that infect humans and animals and cause severe parasitic diseases. Available therapeutics against these devastating diseases are limited by suboptimal efficacy and frequent side effects, as well as the emergence and spread of resistance. Here, we use a drug repurposing strategy and identify altiratinib, a compound originally developed to treat glioblastoma, as a promising drug candidate with broad spectrum activity against apicomplexans. Altiratinib is parasiticidal and blocks the development of intracellular zoites in the nanomolar range and with a high selectivity index. We have identified TgPRP4K of T. gondii as the primary target of altiratinib by genetic target deconvolution, highlighting key residues within the kinase catalytic site that, when mutated, confer resistance to the drug. We have further elucidated the molecular basis of the inhibitory mechanism and species selectivity of altiratinib for TgPRP4K as well as for its P. falciparum counterpart PfCLK3. Our data also point to structural features critical for binding of the other PfCLK3 inhibitor, TCMDC-135051. Consistent with the role of this kinase family in splicing in a broad spectrum of eukaryotes, we have shown that altiratinib causes global disruption of splicing, primarily through intron retention in both T. gondii and P. falciparum. Thus, our data establish parasitic PRP4K/CLK3 as a promising pan-apicomplexan target whose repertoire of inhibitors can be expanded by the addition of altiratinib.

Publisher

Cold Spring Harbor Laboratory

Reference41 articles.

1. Challenges and recent progress in drug discovery for tropical diseases

2. Toxoplasmosis

3. Treatment of toxoplasmosis: historical perspective, animal models, and current clinical practice;Clin. Microbiol. Rev,2018

4. Effective inhibition of c-MET-mediated signaling, growth and migration of ovarian cancer cells is influenced by the ovarian tissue microenvironment

5. Altiratinib Inhibits Tumor Growth, Invasion, Angiogenesis, and Microenvironment-Mediated Drug Resistance via Balanced Inhibition of MET, TIE2, and VEGFR2;Mol Cancer Ther,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3