Abstract
ABSTRACTChromosome segregation requires that centromeres properly attach to spindle microtubules. This is an essential step towards the accuracy of cell division and therefore must be precisely regulated in both mitosis and meiosis. One of the main centromeric regulatory signaling pathways is the Haspin-H3T3ph-chromosomal passenger complex (CPC) cascade, which is responsible for the recruitment of the CPC to the centromeres. In mitosis, Haspin kinase phosphorylates H3 at threonine 3 (H3T3ph), the essential histone mark that recruits the CPC whose catalytic component is Aurora B kinase. To date, no data has yet been presented about the action of the centromeric Haspin-H3T3ph-CPC pathway in mammalian male meiosis. We have analyzed the consequences of Haspin chemical inhibition in cultured spermatocytes using LDN-192960. Our in vitro studies suggest that Haspin kinase activity is required for proper chromosome congression during both meiotic divisions and for the recruitment of phosphorylated Aurora B at meiotic centromeres. These results have been confirmed by the characterization of the meiotic phenotype of the genetic mouse model Haspin-/-, which displays similar defects. In addition, our work demonstrates that the absence of H3T3ph histone mark does not alter SGO2 localization to meiotic centromeres. These results add new and relevant information regarding the regulation of centromere function during meiosis.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献