When less is more - Endogenous tagging with TurboID increases the sensitivity of proximity labelling-based experiments

Author:

Stockhammer AlexanderORCID,Benz Laila S.ORCID,Freund ChristianORCID,Kuropka BennoORCID,Bottanelli FrancescaORCID

Abstract

AbstractIn recent years, proximity labelling has established itself as an unbiased and powerful approach to map the interactome of specific proteins. Generally, protein fusions with labelling enzymes are transiently overexpressed to perform these experiments. Using a pipeline for the rapid generation CRISPR-Cas9 knock-ins (KIs) based on antibiotic selection, we were able to compare the performance of commonly used labelling enzymes when endogenously expressed. We found TurboID and its shorter variant miniTurboID to be superior above other labelling enzymes at physiological expression levels. Endogenous tagging of the μ subunit of the AP-1 complex increased the sensitivity for detection of interactors in a proximity labelling experiment and resulted in a more comprehensive mass spectrometry data set. We were able to identify several known interactors of the complex and cargo proteins that simple overexpression of a labelling enzyme fusion protein could not reveal. Our approach greatly simplifies the execution of proximity labelling experiments for proteins in their native cellular environment and allows going from CRISPR transfection to mass spectrometry data in just over a month.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3