Quasi-universal scaling in mouse-brain neuronal activity stems from edge-of-instability critical dynamics

Author:

Morales Guillermo B.,Di Santo Serena,Muñoz Miguel A.

Abstract

AbstractThe brain is in a state of perpetual reverberant neural activity, even in the absence of specific tasks or stimuli. Shedding light on the origin and functional significance of such activity is essential to understanding how the brain transmits, processes, and stores information. An inspiring, albeit controversial, conjecture proposes that some statistical characteristics of empirically observed neuronal activity can be understood by assuming that brain networks operate in a dynamical regime near the edge of a phase transition. Moreover, the resulting critical behavior, with its concomitant scale invariance, is assumed to carry crucial functional advantages. Here, we present a data-driven analysis based on simultaneous high-throughput recordings of the activity of thousands of individual neurons in various regions of the mouse brain. To analyze these data, we construct a unified theoretical framework that synergistically combines cutting-edge methods for the study of brain activity (such as a phenomenological renormalization group approach and techniques that infer the general dynamical state of a neural population), while designing complementary tools. This unified approach allows us to uncover strong signatures of scale invariance that is “quasi-universal” across brain regions and reveal that these areas operate, to a greater or lesser extent, at the edge of instability. Furthermore, this framework allows us to distinguish between quasi-universal background activity and non-universal input-related activity. Taken together, the following study provides strong evidence that brain networks actually operate in a critical regime which, among other functional advantages, provides them with a scale-invariant substrate of activity in which optimal input representations can be sustained.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3