Directed Evolution of Aptamer Discovery Technologies

Author:

Wu Diana,Gordon Chelsea K.L.,Shin John H.,Eisenstein Michael,Soh H. Tom

Abstract

ConspectusAlthough antibodies are a powerful tool for molecular biology and clinical diagnostics, there are many emerging applications for which nucleic acid-based aptamers can be advantageous. However, generating high-quality aptamers with sufficient affinity and specificity for biomedical applications is a challenging feat for most research laboratories. In this Account, we describe four techniques developed in our lab to accelerate the discovery of high quality aptamer reagents that can achieve robust binding even for challenging molecular targets. The first method is particle display, in which we convert solution-phase aptamers into aptamer particles that can be screened via fluorescence-activated cell sorting (FACS) to quantitatively isolate individual aptamer particles based on their affinity. This enables the efficient isolation of high-affinity aptamers in fewer selection rounds than conventional methods, thereby minimizing selection biases and reducing the emergence of artifacts in the final aptamer pool. We subsequently developed the multi-parametric particle display (MPPD) method, which employs two-color FACS to isolate aptamer particles based on both affinity and specificity, yielding aptamers that exhibit excellent target binding even in complex matrices like serum. The third method is a click chemistry-based particle display (click-PD) that enables the generation and high-throughput screening of “non-nattural” aptamers with a wide range of base modifications. We have shown that these base-modified aptamers can achieve robust affinity and specificity for targets that have proven challenging or inaccessible with natural nucleotide-based aptamer libraries. Lastly, we describe the non-natural aptamer array (N2A2) platform, in which a modified benchtop sequencing instrument is used to characterize base-modified aptamers in a massively parallel fashion, enabling the efficient identification of molecules with excellent affinity and specificity for their targets. This system first generates aptamer clusters on the flow-cell surface that incorporate alkyne-modified nucleobases, and then performs a click reaction to couple those nucleobases to an azide-modified chemical moiety. This yields a sequence-defined array of tens of millions of base-modified sequences, which can then be characterized in a high-throughput fashion. Collectively, we believe that these advancements are helping to make aptamer technology more accessible, efficient, and robust, thereby enabling the use of these affinity reagents for a wider range of molecular recognition and detection-based applications.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3