Abstract
AbstractThe Izhikevich artificial spiking neuron model is among the most employed models in neuromorphic engineering and computational neuroscience, due to the affordable computational effort to discretize it and its biological plausibility. It has been adopted also for applications with limited computational resources in embedded systems. It is important therefore to realize a compromise between error and computational expense to solve numerically the model’s equations. Here we investigate the effects of discretization and we study the solver that realizes the best compromise between accuracy and computational cost, given an available amount of Floating Point Operations per Second (FLOPS). We considered three fixed-step solvers for Ordinary Differential Equations (ODE), commonly used in computational neuroscience: Euler method, the Runge-Kutta 2 method and the Runge-Kutta 4 method. To quantify the error produced by the solvers, we used the Victor Purpura spike train Distance from an ideal solution of the ODE. Counterintuitively, we found that simple methods such as Euler and Runge Kutta 2 can outperform more complex ones (i.e. Runge Kutta 4) in the numerical solution of the Izhikevich model if the same FLOPS are allocated in the comparison. Moreover, we quantified the neuron rest time (with input under threshold resulting in no output spikes) necessary for the numerical solution to converge to the ideal solution and therefore to cancel the error accumulated during the spike train; in this analysis we found that the required rest time is independent from the firing rate and the spike train duration. Our results can generalize in a straightforward manner to other spiking neuron models and provide a systematic analysis of fixed step neural ODE solvers towards an accuracy-computational cost tradeoff.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献