Euler method can outperform more complex ODE solvers in the numerical implementation of the Izhikevich artificial Spiking Neuron Model given the allocated FLOPS

Author:

de Alteriis GiuseppeORCID,Cataldo Enrico,Mazzoni AlbertoORCID,Oddo Calogero MariaORCID

Abstract

AbstractThe Izhikevich artificial spiking neuron model is among the most employed models in neuromorphic engineering and computational neuroscience, due to the affordable computational effort to discretize it and its biological plausibility. It has been adopted also for applications with limited computational resources in embedded systems. It is important therefore to realize a compromise between error and computational expense to solve numerically the model’s equations. Here we investigate the effects of discretization and we study the solver that realizes the best compromise between accuracy and computational cost, given an available amount of Floating Point Operations per Second (FLOPS). We considered three fixed-step solvers for Ordinary Differential Equations (ODE), commonly used in computational neuroscience: Euler method, the Runge-Kutta 2 method and the Runge-Kutta 4 method. To quantify the error produced by the solvers, we used the Victor Purpura spike train Distance from an ideal solution of the ODE. Counterintuitively, we found that simple methods such as Euler and Runge Kutta 2 can outperform more complex ones (i.e. Runge Kutta 4) in the numerical solution of the Izhikevich model if the same FLOPS are allocated in the comparison. Moreover, we quantified the neuron rest time (with input under threshold resulting in no output spikes) necessary for the numerical solution to converge to the ideal solution and therefore to cancel the error accumulated during the spike train; in this analysis we found that the required rest time is independent from the firing rate and the spike train duration. Our results can generalize in a straightforward manner to other spiking neuron models and provide a systematic analysis of fixed step neural ODE solvers towards an accuracy-computational cost tradeoff.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3