Uncovering Xenobiotics in the Dark Metabolome using Ion Mobility Spectrometry, Mass Defect Analysis and Machine Learning

Author:

Foster MaKayla,Rainey Markace,Watson Chandler,Dodds James N.,Fernández Facundo M.,Baker Erin S.ORCID

Abstract

AbstractThe identification of xenobiotics in nontargeted metabolomic analyses is a vital step in understanding human exposure. Xenobiotic metabolism, excretion, and co-existence with other endogenous molecules however greatly complicate nontargeted studies. While mass spectrometry (MS)-based platforms are commonly used in metabolomic measurements, deconvoluting endogenous metabolites and xenobiotics is often challenged by the lack of xenobiotic parent and metabolite standards as well as the numerous isomers possible for each small molecule m/z feature. Here, we evaluate the use of ion mobility spectrometry coupled with MS (IMS-MS) and mass defect filtering in a xenobiotic structural annotation workflow to reduce large metabolomic feature lists and uncover potential xenobiotic classes and species detected in the metabolomic studies. To evaluate the workflow, xenobiotics having known high toxicities including per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were examined. Initially, to address the lack of available IMS collision cross section (CCS) values for per- and polyfluoroalkyl substances (PFAS), 88 PFAS standards were evaluated with IMS-MS to both develop a targeted PFAS CCS library and for use in machine learning predictions. The CCS values for biomolecules and xenobiotics were then plotted versus m/z, clearly distinguishing the biomolecules and halogenated xenobiotics. The xenobiotic structural annotation workflow was then used to annotate potential PFAS features in NIST human serum. The workflow reduced the 2,423 detected LC-IMS-MS features to 80 possible PFAS with 17 confidently identified through targeted analyses and 48 additional features correlating with possible CompTox entries.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3