Abstract
AbstractPhenotypic plasticity allows organisms to optimize traits for their environment. As organisms age, they experience diverse environments that merit varying degrees of phenotypic plasticity. Developmental transitions can control these age-dependent changes in plasticity and as such, the timing of these transitions can determine when plasticity changes in an organism.Here we investigate how the transition from juvenile-to adult-vegetative development known as vegetative phase change (VPC) contributes to age-dependent changes in phenotypic plasticity using both natural accessions and mutant lines in the model plant Arabidopsis thaliana. Further, we look at how the timing of this transition and the concordant shifts in plasticity change across accessions and environments.We found that the adult phase of vegetative development has greater plasticity than the juvenile phase and confirmed that this difference in plasticity is caused by VPC using mutant lines. Further, we found that the timing of VPC, and therefore the time when increased plasticity is acquired, varies significantly across genotypes and environments.This genetic and environmental variation in the timing of VPC indicates the potential for population-level adaptive evolution of VPC. The consistent age-dependent changes in plasticity caused by VPC add further support to the hypothesis that VPC is adaptive.
Publisher
Cold Spring Harbor Laboratory