Patterns of regulatory divergence and gene expression in hybrids are associated with molecular evolution in species undergoing gene flow

Author:

Díaz Fernando,Wolf Jason,de Brito Reinaldo

Abstract

AbstractThe extent to which hybridization disrupts a gene’s pattern of expression likely governs its propensity for introgression, while its extent of molecular divergence can itself underlie such disruption. Together, these phenomena shape the landscape of sequence and transcriptional divergence across the genome as species diverge. To understand this process, we examine gene expression inheritance, regulatory and molecular divergences in the reproductive transcriptomes of species linked by gene flow. The fruit flies Anastrepha fraterculus and A. obliqua show evidence of gene flow despite clear evolutionary divergence and incomplete reproductive isolation. We find that their transcriptional patterns are a mosaic between those typically observed within and between allopatric species. Genes showing transgressive expression in hybrids or cis-regulatory divergence between species are associated with greater molecular divergence. This may reflect pleiotropic constraints that make them more resistant to gene flow or they may be more likely to experience divergent selection. However, while these highly divergent genes are likely to be important contributors to species differences, they are relatively rare. Instead, most differentially regulated genes, including those linked to reproduction, show high degrees of dominance in hybrids and trans-regulated divergence between species, suggesting widespread genetic compatibility that allowed for the identified introgression. These findings provide insights into how postzygotic isolating mechanisms might evolve in the presence of gene flow: regions showing cis-regulatory divergence or transgressive expression contribute to reproductive isolation, while regions with dominant expression and trans-regulatory divergence act as a buffer of hybrid breakdown, facilitating introgression, and leading to a genomic mosaic of expression and sequence divergence.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3