Folate pathway metabolites are altered in the plasma of subjects with Down syndrome: relation to chromosomal dosage

Author:

Vione Beatrice,Locatelli Chiara,Zavaroni Giacomo,Piano Angela,La Rocca Giorgia,Caracausi Maria,Vitale Lorenza,Piovesan Allison,Gori Caterina,Pirazzoli Gian Luca,Strippoli Pierluigi,Cocchi Guido,Ramacieri Giuseppe,Pelleri Maria Chiara,Antonaros Francesca

Abstract

AbstractDown syndrome (DS) is the most common chromosomal disorder, and it is caused by trisomy of chromosome 21 (Hsa21). Subjects with DS can show a large heterogeneity of phenotypes and congenital defects and the most constant clinical features present are typical facies and intellectual disability (ID). Jérôme Lejeune was the first who hypothesized that DS could be a metabolic disease and he noted an alteration of the folate pathway (part of the one-carbon cycle) in trisomic cell lines and subjects with DS. Comparing DS with other metabolic diseases characterized by ID and altered folate pathway he hypothesized a possible correlation among them. Recently, a nuclear magnetic resonance (NMR) analysis of the detectable metabolic part in plasma and urine samples was performed, comparing a group of subjects with DS and a group of control subjects. The data showed a clear difference in the concentration of some metabolites (all involved in central metabolic processes) for the DS group, which was sometimes in agreement with gene dosage expected proportions (3:2). The aim of this work is to underline metabolic differences between subjects with DS and control subjects in order to better understand the dysregulation of the folate pathway in DS. For the first time, we performed enzyme-linked immunosorbent assays (ELISAs) to identify the concentration of 4 different intermediates of the one-carbon cycle, namely tetrahydrofolate (THF), 5-methyl-THF, 5-formyl-THF and S-adenosyl-homocysteine (SAH) in plasma samples obtained from 153 subjects with DS and 54 euploid subjects. Results highlight specific alterations of some folate pathway related metabolites. The relevance of these results for the biology of intelligence and its impairment in trisomy 21 is discussed leading to the proposal of 5-methyl-THF as the best candidate for a clinical trial aimed at restoring the dysregulation of folate pathway in trisomy 21 and improving cognitive skills of subjects with DS.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3