A multi-species co-occurrence index to avoid type II errors in null model testing

Author:

Lagat Vitalis K.ORCID,Latombe GuillaumeORCID,Hui CangORCID

Abstract

AbstractCommunity structure is determined by the interplay among different processes, including biotic interactions, abiotic filtering and dispersal. Their effects can be detected by comparing observed patterns of co-occurrence between different species (e.g. C-score and the natural metric) to patterns generated by null models based on permutations of species-by-site matrices under constraints on row or column sums. These comparisons enable us to detect significant signals of species association or dissociation, from which the type of biotic interactions between species (e.g. facilitative or antagonistic) can be inferred. Commonly used patterns are based on the levels of co-occurrence between randomly paired species. The level of co-occurrence for three or more species is rarely considered, ignoring the potential existence of functional guilds or motifs composed of multiple species within the community. Null model tests that do not consider multi-species co-occurrence could therefore generate false negatives (Type II error) in detecting non-random forces at play that would only be apparent for such guilds. Here, we propose a multi-species co-occurrence index (hereafter, joint occupancy) that measures the number of sites jointly occupied by multiple species simultaneously, of which the pairwise metric of co-occurrence is a special case. Using this joint occupancy index along with standard permutation algorithms for null model testing, we illustrate nine archetypes of multi-species co-occurrence and explore how frequent they are in the seminal database of 289 species-by-site community matrices published by Atmar and Patterson in 1995. We show that null model testing using pairwise co-occurrence metrics could indeed lead to severe Type II errors in one specific archetype, accounting for 2.4% of the tested community matrices.

Publisher

Cold Spring Harbor Laboratory

Reference40 articles.

1. Species’ distributions as a coexistence problem: a response to Godsoe et al;Trends Ecol. Evol,2018

2. Atmar, W. , Patterson, B.D. , 1995. The nestedness temperature calculator: a Visual Basic program, including 294 presence-absence matrices, AICS Research, Univ. Park, NM and Field Museum, Chicago. Park. NM F. Museum, Chicago.

3. Should environmental filtering be abandoned? Trends Ecol;Evol,2017

4. Co-occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements;Ecol. Evol,2016

5. Interspecific Competition and Species Co-Occurrence Patterns on Islands: Null Models and the Evaluation of Evidence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3